

Carrera o programa: INGENIERÍA QUÍMICA Gestión: 2024

Programa Analítico QUIMICA ORGANICA

1. Datos generales

Unidad de formación:	QUIMICA ORGANICA		Código SISS: 2004053
Carácter: Obligatoria/Electiva	Obligatoria		
Nivel (Semestre/año):	Cuarto Semestre		
Dependencia: Carrera/Programa/Departamento	Departamento de Química		
Carga horaria total semestre/año	120 horas/semestre	Créditos acadé	micos: 6
Pre-requisitos:	EQUILIBRIOS EN DISOLUCIÓN (2004050)		

2. Contenidos mínimos

Unidad Didáctica 1: INTRODUCCION	1.1 Orbitales atómicos 1.2 Mecánica Cuántica 1.3 Número cuántico principal 1.4 Número cuántico Secundario o acimutal 1.5 Número Cuántico Magnético 1.6 Número Cuántico del Espín 1.7 Relación entre los números cuánticos "l" y "m" 1.8 Relación entre los números cuánticos "n" y "l" 1.9 Configuración electrónica de los átomos.
Unidad Didáctica 2: ENLACE QUIMICO	 2.1 Introducción 2.2 Formación de enlaces electrovalentes 2.3 Formación de enlaces covalentes 2.4 Enlace covalente coordinado 2.5 Enlace metálico

	UMSS	
	2.6 Enlace de Hidrógeno	
	2.7 Electronegatividad	
	2.8 Carga formal de un átomo	
	2.9 Polaridad de las moléculas	
	2.10 Polaridad de los enlaces	
	2.11 Momento dipolar	
	2.12 Moléculas apolares	
	3.1 Generalidades	
	3.2 Orbitales híbridos	
	3.3 Estado basal del átomo de carbono	
	3.4 Orbitales híbridos sp3	
	3.5 Orbitales híbridos sp2	
H 11 1D11/ // 2	3.6 Orbitales híbridos sp	
Unidad Didáctica 3: ATOMO DE CARBONO	3.7 Enlace sigma	
ATOMO DE CARBONO	3.8 Enlace pí	
	3.9 Longitud de enlace	
	3.10 Angulo de enlace	
	3.11 Resonancia	
	4.1 Fuerzas Intermoleculares	
	4.2 Puntos de ebullición	
	4.3 Punto de fusión	
	4.4 Solubilidad	
	4.5 Ácidos y Bases	
	4.6 Mecanismos de reacción	
	4.7 Rupturas o clivajes homolíticos	
	4.8 Rupturas o clivajes heterolíticos.	
	4.9 Clasificación general de los mecanismos de reacción	
Unidad Didáctica 4:	4.10 Desplazamiento de electrones en las moléculas orgánicas	
PROPIEDADES DE LOS	4.11 Efecto inductivo	
COMPUESTOS ORGANICOS	4.12 Efecto mesomérico, resonancia.	
OKOMNEOD	4.13 Fuerzas intermoleculares: fuerzas de Van der Waals, puentes de	
	hidrógeno, y consecuencias de estos.	
	4.14 Definiciones de: ácido y base, reactivo, substrato, nucleófilo y	
	electrófilo	
	4.15 Naturaleza de las reacciones orgánicas	
	4.16 Ruptura de enlace químico: homolítico, heterolítico.	
	4.17 Formación de carbocationes, carbaniones, radicales y otros	
	intermediarios	
	4.18 Clases de reacciones orgánicas: introducción	

	4.19 Reacciones de sustitución, mecanismo SN1,SN2		
	4.20 Reacciones de eliminación, mecanismo E1,E2		
	4.21 Reacciones organometálicas : magnesio (Grignard) litio, sodio y		
	otros metales.		
	5.1 Introducción		
	5.2 Hibridación de orbitales y estructura del metano 5.3 Formas de otros alcanos		
	5.4 Nomenclatura de los alcanos		
	5.5 Propiedades físicas de los alcanos		
	5.6 Análisis de conformación del butano		
	5.7 Estructuras de los cicloalcanos: tensión angular		
	5.8 Análisis de conformación del ciclohexano		
	5.9 Compuestos substituidos del ciclohexano: Hidrógenos axiales y		
	ecuatoriales		
	5.10 Cicloalcanos disubstituidos:isomeria cis-trans		
	5.11 Síntesis de alcanos y cicloalcanos: La síntesis de alcanos de Corey-		
	House; Reacción de Wurtz; Hidrogenación de alquenos; Reducción de		
	haluros de alquilo		
	5.12 Reactividad química: Reacciones de alcanos y cicloalcanos		
	5.13 Introducción: Homólisis y Heterólisis de los enlaces covalentes		
Unidad Didáctica 5:	5.14 Reactivos intermedios en química orgánica		
ALCANOS Y	5.15 Energías de disociación de enlace: Energías de Disociación de		
CICLOALCANOS SUS	Enlace y Estabilidades relativas de los Radicales Libres.		
ESTRUCTURAS,	5.16 Reacciones químicas de los alcanos		
PROPIEDADES Y	5.17 La halogenación del metano: Observaciones experimentales y		
SINTESIS	mecanismo de reacción		
	5.18 Cloración del metano: Cambios de energía		
	5.19 Velocidades de reacción: Teoría de las colisiones		
	5.20 Termodinámica y cinética de las reacciones del metano con		
	halógenos		
	5.21 Halogenación de alcanos superiores: Reactividad y selectividad		
	5.22 La estructura de los carbocationes y los radicales libres: Hibridación		
	sp2; Carbocationes; Radicales libres.		
	5.23 Reacciones de los cicloalcanos: reacciones de apertura del anillo del		
	ciclopropano.		
Unidad Didáctica 6:	6.1 Introducción		
ALQUENOS:	6.2 Nomenclatura		
ESTRUCTURA			
PROPIEDADES Y	6.3 Hibridación de orbitales y estructura de los alquenos		
SINTESIS	6.4 Calores de hidrogenación: Estabilidad de los alquenos		

	UMSS
	6.5 Cicloalquenos
	6.6 Síntesis de alquenos: Reacciones de eliminación: Hidrogenación y
	deshidrogenación. Función del catalizador; Síntesis de alquenos por
	deshidratación de alcoholes; Estabilidad de los carbocationes;
	Estabilidad de los carbocationes y estado de transición; Estabilidad
	de los carbocationes y verificación de rearreglos moleculares;
	Formación de alquenos por deshidrohalogenación de haluros de alquilo;
	Formación de alquenos por deshalogenación de dihaluros vicinales.
	6.7 Resumen de los métodos para la preparación de alquenos.
	6.8 Reacciones de los alquenos: reacciones de adición del doble enlace
	carbono-carbono
	6.9 Introducción
	6.10 La adición de haluros de hidrógeno a los alquenos: explicación de la
	regla de Markovnikov: Enunciado moderno de la regla de Markovnikov;
	Reacciones regioespecíficas.
	6.11 La adición de agua a alquenos: Hidratación catalizada por ácidos.
	6.12 Preparación de alcoholes a partir de alquenos por oximercuriación
	desmercuriación (solvomercuración-desmercuración)
	6.13 Hidroboración-oxidación.
	6.14 Adición de halógenos a alquenos
	6.15 Epóxidos: epoxidación de alquenos
	6.16 Oxidación de alquenos: Hidroxilación " sin " de los alquenos;
	Hidroxilación " anti" de alquenos; Ruptura oxidatíva de los alquenos;
	Ozonización (ozonólisis) de alquenos
	6.17 Adición de radicales libres a los alquenos: La adición anti-
	Markovnikov del bromuro de hidrógeno
	6.18 Dimerización de alquenos:Alquilación de alquenos por
	carbocationes
	6.19 Resumen de las reacciones de adición de los alquenos
	7.1 Construction (14) 1 1 1 14
	7.1 Sustitución alílica y el radical alílo
	7.2 Estabilidad del radical alílo: Descripción orbital-molecular del radical
	alílo; Descripción del radical alílo según la teoría de la resonancia
Unidad Didáctica 7:	7.3 Alcadienos e hidrocarburos poli-insaturados
SISTEMAS	7.4 butadieno: deslocalización de electrones: Longitudes de enlace del 1,3-
CONJUGADOS	butadieno; Conformaciones del 1,3-butadieno; Estabilidad de los dienos
INSATURADOS	conjugados
	7.5 Adición electrofílica y dienos conjugados adición 1,4:
	Comparación entre la velocidad de reacción y el control del
	equilibrio en una reacción química
TT 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.6 La reacción de Diels-Alder: reacción de cicloadición-1,4 de dienos.
Unidad Didáctica 8:	8.1 Introducción

	UMSS
ALQUINOS	8.2 Nomenclatura de los alquinos8.3 Carbono hibridado en sp: Estructura del acetileno
	8.4 Reacciones de los alquinos: Adición de hidrógeno; Adición de
	halógenos; Adición de haluros de hidrógeno; Adición de agua;
	Sustitución del hidrógeno acetilénico; Otros acetiluros metálicos;
	Reacciones de apareo
	8.5 Síntesis de alquinos: A partir de otros alquinos; Por reacciones de
	eliminación
	8.6 Propiedades físicas de los alquinos
	8.7 Oxidación de alquinos
	8.8 Análisis químicos de alcanos, alquenos, alquinos, haluros de alquilo y
	alcoholes
	8.9 Resumen de la química de los alquinos
	ois resumen de la quimea de los diquinos
	9.1 Estructura y nomenclatura
	9.2 Propiedades físicas de los alcoholes, fenoles y éteres: Alcoholes y éteres
	de importancia.
	9.3 Preparación de alcoholes: Hidratación de alquenos; Oximercuriación-
	desmercuriación; Hidroboración-Oxidación; Reducción de compuestos
	carbonílicos; Alcoholes a partir de reactivos de Grignard; Limitaciones
	de la síntesis de Grignard.
TI II I DIII (I O	9.4 Reacciones de los alcoholes: Reacciones que implican la ruptura del
Unidad Didáctica 9: ALCOHOLES FENOLES	enlace O-H; Los alcoholes como ácidos; Formación de ésteres;
Y ETERES	Oxidación de alcoholes; Reacciones que implican la ruptura de los
	enlaces C-O; Deshidratación de alcoholes; Reacción con haluros de
	hidrógeno; Reacciones con haluros de fósforo y cloruro de tionilo; Alcoholes polihidroxilicos.
	9.5 Eteres: Síntesis de éteres; Reacciones de los éteres.
	9.6 Síntesis de fenoles: Reacciones de los fenoles.
	9.7 Los fenoles como ácidos: Otras reacciones del grupo O-H de los fenoles;
	Reacciones del anillo bencénico de los fenoles
	reactiones del amino beneemed de los fenoles
	10.1 Introducción
	10.2 Nomenclatura de aldehídos y cetonas
	10.3 Propiedades físicas
Unidad Didáctica 10:	10.4 Preparación de aldehídos: Preparación de aldehídos por oxidación
ALDEHIDOS Y	de alcoholes; Preparación de aldehídos por oxidación de alcoholes;
CETONAS	Preparación de aldehídos por reducción de derivados de ácido
	10.5 Preparación de cetonas: Preparación de cetonas por reacciones de
	acilación de Friedel-Crafts; Preparación de cetonas por oxidación de
	alcoholes secundarios; Preparación de cetonas por reacción de los

- compuestos de organocadmio con cloruros de ácido; Preparación de cetonas a partir de dialquilcupratos de litio.
- 10.6 Consideraciones generales sobre las reacciones de los compuestos de carbonilo: Estructura del grupo carbonilo; Adición nucleofílica al doble enlace carbono-oxígeno; Reversibilidad de las adiciones nucleofílicas al doble enlace carbono-oxígeno.
- 10.7 Adición de cianuro de hidrógeno y bisulfito de sodio
- 10.8 Tautomeria ceto-enol: Acidez del hidrógeno-alfa en los compuestos de carbonilo; Tautómeros ceto y enol
- 10.9 Adición aldólica: la adición de iones enolato a aldehidos y cetonas: Adiciones aldólicas cruzadas
- 10.10 Reacción de cannizzaro.
- 10.11 Adición de Iluros: La reacción de Wittig; Adición de iluros de azufre
- 10.12 Adición de alcoholes: Acetales y Cetales: Tioacetales y tiocetales
- 10.13 Adición de derivados de amoniaco: 2-4dinitrofenilhidrazonas, semicarbazonas y oximas; Iminas y enaminas; Hidrazonas: La reducción de Wolff-Kishner.
- 10.14 Halogenación de cetonas: Halogenación promovida por bases; Halogenación catalizada por ácidos; La reacción del haloformo
- 10.15 Aldehídos y cetonas insaturados en alfa y beta.
- 10.16 Pruebas químicas para la determinación de aldehídos y cetonas: Prueba de Tollens o (del espejo de plata)

3. Referencia bibliográfica general de la unidad de formación:

- 1. Quimica Organica; Solomons T.W, Limusa Mexico (2000).
- 2. Quimica Organica Fundamental; Henry Rakoff, Norman C. Rose, Limusa (1982)
- 3. Quimica Organica; Menger, Goldsmith, Mandell, Fondo Educativo Interamericano S.A. (1976).
- 4. Quimica Organica; Morrison y Boyd (Quinta Edicion), Addison-Wesley Iberoamerica (1990)
- 5. Quimica Organica; Mc. Murray, Grupo Editorial Iberoamericana (1994)
- 6. Fundamental Of Organica Chemestry; Harper Collins College Outline (1993)
- 7. Quimica Organica; Herbert Meislich, Howard Nechamkim y Jacob Sharefkin, Teoria y 2565 Problemas Resueltos Sxhaum-Mc.Graw Hill (1987)
- 8. Quimica Organica; Satanley H. Pine, James B. Hendrickson Donald J. Cram, George S. Hammond, Mc. Graw Hill (1987)
- 9. Quimica Organica de Metano a Macromoleculas John D. Roberts, Ross Stewaert-Marjorie-Caserio. Interamericano (1979).