

Carrera o programa: INGENIERÍA QUÍMICA Gestión: 2024

Programa Analítico TERMODINAMICA II

1. Datos generales

Unidad de formación:	TERMODINAMICA II		Código SISS: 2004196
Carácter: Obligatoria/Electiva	Obligatoria		
Nivel (Semestre/año):	Quinto Semestre		
Dependencia: Carrera/Programa/Departamento	Departamento de Química		
Carga horaria total semestre/año	120 horas/semestre	Créditos acadé	micos: 6
Pre-requisitos:	TERMODINAMICA I (2004183)		

2. Contenidos mínimos

	1.1 Función de Helmholtz y función de Gibbs
Unidad Didáctica 1: RELACIONES TERMODINÁMICAS	1.2 Ecuaciones de Maxwell
	1.3 Ecuación de Clausius – Clapeyron
	1.4 Relaciones que involucran entalpía, energía interna, entropía
	1.5 Relaciones que involucran calor específico
	1.6 Problemas
	2.1 Fugacidad y coeficiente de fugacidad.
	2.2 Estados correspondientes, estimación del coeficiente de fugacidad de un
Unidad Didáctica 2:	gas a altas presiones.
SISTEMAS DE UN	2.3 Funciones de desviación
COMPONENTE	2.4 Estimación de las funciones de desviación utilizando la ley de los estados
	correspondientes.
	2.5 Equilibrio entre fases, regla de las fases de Gibbs.

	2.6 Estimación de fugacidad de las fases líquidas y sólidas.		
	2.7 Ecuaciones de presión de vapor		
	2.8 Gráficas de presión de vapor		
	2.9 Problemas		
	3.1 Propiedades molares parciales.		
	3.2 Cambio de propiedades al mezclar		
	3.3 Potencial químico.		
	3.4 Evaluación gráfica de propiedades parciales molares en mezclas.		
	3.5 Caso de mezcla vapor - gas, humedad, termometría de bulbo húmedo y		
	seco, psicrometría.		
	3.6 Fugacidad de una mezcla.		
	3.7 Soluciones ideales.		
	3.8 Actividad, estados de referencia.		
Unidad Didáctica 3:	3.9 Propiedades pseudocríticas.		
SISTEMAS MULTICOMPONENTES	3.10 Ecuación de Gibbs – Duhem		
	3.11 Propiedades de exceso.		
	3.12 Ecuaciones empíricas de energía libre de exceso.		
	3.13 Soluciones regulares y atérmicas.		
	3.14 Descripción del equilibrio líquido - vapor.		
	3.15 Estimación de coeficientes de actividad.		
	3.16 Predicción de equilibrios ternarios líquido – vapor a partir de datos		
	de mezclas binarias.		
	3.17 Problemas		
	4.1 La constante de equilibrio.		
	4.2 Principio de Le Chatelier.		
Unidad Didáctica 4: EQUILIBRIO QUÍMICO	4.3 Variación de la constante de equilibrio con la temperatura.		
	4.4 Predicción de la constante de equilibrio.		
	4.5 Reacciones adiabáticas, temperatura teórica de llama		
	4.6 Equilibrio con reacciones en competencia.		
	4.7 Electroquímica		
	4.8 Variación de la tensión de la celda con la temperatura.		
	4.9 Reacciones en los electrodos y potenciales normales.		
	4.10 Equilibrio en ecuaciones electroquímicas.		
	4.11 Problemas		

3. Referencia bibliográfica general de la unidad de formación:

- 1. Balshizer, R.E et al (1974) "Termodinámica Química para Ingenieros" Prentice Hall International, caps. 6, 9 13.
- 2. Hougen, O.A., Watson, K.M., Ragatz, R.A (1988) "Principios de los Procesos Químicos" Reverté, caps. 20 27.
- 3. Modell, M., Reid, R (1974) "Thermodynamics and its Applications" Prentice Hall inc, caps. 8 10.
- 4. Prausnitz, J.M., Lichtenthaler, R.n., de Azevedo, E.G. "Termodinámica Molecular de los Equilibrios de Fases" 3° ed. Prentice Hall
- 5. Smith, J.M., van Ness, H.C (1986) "Introducción a la Termodinámica en Ingeniería Química" Calypso México, caps 6 9.
- 6. Palmer, D.A "Predicting equilibrium relationship for maveric mixtures" Chemical Engineering 80-85;1975 june
- 7. Renon, H et al. "Molecular thermodynamics of simple liquids" Ind. Eng. Chem. Fundam. 6(1):50-58;1967 february
- 8. Holmes, M.J., VAN WINKLE, M "Prediction of ternary vapor liquid equilibria from binary data" Industrial and Engineering Chemistry 62(1):2-31;1977 january.
- 9. Fredenslund,A et al. "Computerized design of multicomponent distillation columns using the unifac group contribution method for calculation of activity coefficients" Ind. Eng. Chem. Proces Design and Development 16(4):450-462;1977
- 10. Hiza,M.J. "An empirical excess volume model for estimating liquefied natural gas densities" Fluid Phase Equilibria 2(2):27-38;1978 August
- 11. Mc Carty,R.D. "Mathematical models for the prediction of liquefied natural gas densities" J. Chem.Thermodynamics 14(9):837-854;1982 september.
- 12. Poling, B.E.; Prausnitz, J.M.; O'Connell, J.P..(2000) "The properties of gases and liquids"; Mc Graw Hill, cap. 8.
- 13. Reynolds, W.C. (1979) "Thermodynamic Properties in SI"; Dept. of Mechanical Engineering, Stanford University.